Biohydrogen production from enzymatic hydrolysis of food waste in batch and continuous systems

نویسندگان

  • Wei Han
  • Yingting Yan
  • Yiwen Shi
  • Jingjing Gu
  • Junhong Tang
  • Hongting Zhao
چکیده

In this study, the feasibility of biohydrogen production from enzymatic hydrolysis of food waste was investigated. Food waste (solid-to-liquid ratio of 10%, w/v) was first hydrolyzed by commercial glucoamylase to release glucose (24.35 g/L) in the food waste hydrolysate. Then, the obtained food waste hydrolysate was used as substrate for biohydrogen production in the batch and continuous (continuous stirred tank reactor, CSTR) systems. It was observed that the maximum cumulative hydrogen production of 5850 mL was achieved with a yield of 245.7 mL hydrogen/g glucose (1.97 mol hydrogen/mol glucose) in the batch system. In the continuous system, the effect of hydraulic retention time (HRT) on biohydrogen production from food waste hydrolysate was investigated. The optimal HRT obtained from this study was 6 h with the highest hydrogen production rate of 8.02 mmol/(h·L). Ethanol and acetate were the major soluble microbial products with low propionate production at all HRTs. Enzymatic hydrolysis of food waste could effectively accelerate hydrolysis speed, improve substrate utilization rate and increase hydrogen yield.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Batch Fermentative Biohydrogen Production Process Using Immobilized Anaerobic Sludge from Organic Solid Waste

This study examined the potential of organic solid waste for biohydrogen production using immobilized anaerobic sludge. Biohydrogen was produced under batch mode at process conditions of 7.9, 30.3 ◦C and 90 h for pH, temperature and fermentation time, respectively. A maximum biohydrogen fraction of 48.67%, which corresponded to a biohydrogen yield of 215.39 mL H2/g Total Volatile Solids (TVS), ...

متن کامل

Food waste and food processing waste for biohydrogen production: a review.

Food waste and food processing wastes which are abundant in nature and rich in carbon content can be attractive renewable substrates for sustainable biohydrogen production due to wide economic prospects in industries. Many studies utilizing common food wastes such as dining hall or restaurant waste and wastes generated from food processing industries have shown good percentages of hydrogen in g...

متن کامل

Dark Hydrogen Fermentation From Paper Mill Effluent (PME): The influence of Substrate Concentration and Hydrolysis

Paper mill effluent (PME) was used as an organic feedstock for production of biohydrogen via dark fermentation using heat-shock pretreated anaerobic sludge under mesophilic conditions. The influence of substrate concentration (5, 10 and 15 g-COD/L) and the initial pH (5 and 7) on the efficiency of dark hydrogen fermentation from PME were investigated. The highest hydrogen yield of 55.4 mL/g-COD...

متن کامل

Biohydrogen Production of Vinasse Derived from Bioethanol Processing Industry Wastewater: A Review

Background: Increasing global consumption of fossil fuels leads to greenhouse gas emissions, climate change and environmental pollution. Agricultural, animal and food industrial waste is one of the main sources of pollution. The bioethanol industry is one of 17 highly polluted industries. In the process of producing bioethanol, vinasse is produced, and so far 22.4 Giga litter of vinasse has bee...

متن کامل

Enhanced Biohydrogen Production by Accelerating the Hydrolysis of Macromolecular Components of Waste Activated Sludge Using TiO2 Photocatalysis as a Pretreatment

The effects of TiO2 photocatalysis on the hydrolysis of protein of waste activated sludge (WAS) and its biodegradability were investigated in this study. After 12-h UV irradiation, the removal ratio of protein by TiO2 photocatalysis reached 98.1%. The optimal condition for photocatalytic degradation of protein is TiO2 dosage of 5.0 mg·L under 2.4 w·m UV light irradiation. TiO2 photocatalysis in...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016